homogeneous
adjective
/həˈmɑ.d͡ʒə.nəs/
,
/ˌhoʊ.moʊˈd͡ʒiː.njəs/
,
/ˌhoʊ.moʊˈd͡ʒɛ.njəs/
,
/ˌhoʊ.məˈd͡ʒiː.njəs/
,
/ˌhɒ.mə(ʊ)ˈdʒiː.nɪəs/
,
/ˌhəʊ.mə(ʊ)ˈdʒiː.nɪəs/
|
- (ring theory, of an element of a graded ring) Belonging to one of the summands of the grading (if the ring is graded over the natural numbers and the element is in the kth summand, it is said to be homogeneous of degree k; if the ring is graded over a commutative monoid I, and the element is an element of the ith summand, it is said to be of grade i)
|
homogeeninen,
samanlainen
|
- (geometry, of a space equipped with a group action) Informally: Everywhere the same, uniform, in the sense that any point can be moved to any other (via the group action) while respecting the structure of the space. Formally: Such that the group action is transitively and acts by automorphisms on the space (some authors also require that the action be faithful).
|
homogeeninen,
tasa-aineinen
|
homogeneity
noun
/ˌhoʊ.mə.d͡ʒəˈneɪ.ə.ti/
,
/ˌhoʊ.mə.d͡ʒəˈniː.ə.ti/
,
/ˌhɑ.mə.d͡ʒəˈneɪ.ə.ti/
,
/ˌhɑ.mə.d͡ʒəˈniː.ə.ti/
,
/ˌhɒm.ə(ʊ).d͡ʒəˈneɪ.ə.ti/
,
/ˌhɒm.ə(ʊ).d͡ʒəˈniː.ə.ti/
,
/ˌhəʉ.mə.d͡ʒəˈniː.ə.ti/
,
/ˌhəʉ.mə.d͡ʒəˈnæɪ.ə.ti/
,
/ˌhəʊ.mə(ʊ).d͡ʒəˈneɪ.ə.ti/
,
/ˌhəʊ.mə(ʊ).d͡ʒəˈniː.ə.ti/
,
[ˌhəʉ.mə.d͡ʒəˈnæɪ.ə.ɾi]
,
[ˌhəʉ.mə.d͡ʒəˈnɪi.ə.ti]
,
[ˌhəʉ.mə.d͡ʒəˈnɪi.ə.ɾi]
|
- The condition of being homogeneous: having uniformity of constituent content.
|
homogeenisuus
|
homogenize
verb
/həˈmɑːd͡ʒənaɪz/
,
/həˈmɒdʒənaɪz/
|
- Specifically, to treat milk so that the cream no longer separates.
|
homogenoida
|
- To make homogeneous, to blend or puree.
|
homogenoida,
sekoittaa
|
homogenization
noun
|
- The act of making something homogenous, or the same throughout; or the tendency of something to become homogenous.
|
homogenointi
|